1. VALORES DE REFERÊNCIA

1.1. Aço

Tabela 1

Tipo	mm	pol.	Kg/m	Tipo	mm	Kg/m
CA50	4,2	-	0,109	CA60	4,2	0,109
CA50	4,8	3/16	0,140	CA60	4,6	0,131
CA50	6,3	1/4	0,248	CA60	5,0	0,157
CA50	8,0	5/16	0,393	CA60	6, 0	0,228
CA50	10,0	3/8	0,624	CA60	6,4	0,253
CA50	12,5	1/2	0,988	CA60	7,0	0,302
CA50	16,0	5/8	1,570	CA60	8,0	0,393
CA50	20,0	3/4	2,480	CA60	9,5	0,560

1.2. Lajotas para Laje

Tabela 2

Tipo	Nome	Altura	Largura	Peso/un	Absorção	Termicidad	Consumo
		(cm)	(cm)	(Kg)	de água (% em peso)	e (Kcal/m²H	médio/m²
					1 7	°C)	
Cerâmica	H7	7	25a28	2,9	10,72	0,68	13,9un
Cerâmica	H12	7	25a28	4,5	9,60	0,68	13,9un
EPS	-	> 8	var.	13kg/m^3	0,00	0,04	var.

OBS: - Comprimento das lajotas cerâmicas: 19cm.

- Altura do EPS: varia de acordo com o projeto.

- Largura do EPS: varia de acordo com o projeto, seguindo a condição:

Tabela 03

L = Largura do EPS (cm)	Dispositivo para melhorar aderência
≤ 25cm	-
$26\text{cm} < L \le 40\text{cm}$	Utilização de adesivo na
	argamassa de reboco, p.ex:
	bianco
L > 40cm	Utilização de tela metálica
	fixada na parte inferior das
	vigas e de adesivo na
	argamassa

1.3. Pesos de materiais (NB5/78)

Tabela 04

·	Peso específico	
		aparente (Kgf/m³)
Rochas	Arenito	2600
Roemas	Basalto	3000
	Gneiss	3000
	Granito	2800
	Mármore e calcário	2800
Blocos artificiais	Blocos de argamassa	2200
Diocos artificiais	Cimento amianto	2000
	Tijolos furados	1300
	Tijolos maciços	1800
	Tijolos calcários	2000
Revestimentos	Argamassa de cal,cimento e areia	1900
_	Argamassa de cimento e areia	2100
Concretos	Argamassa de gesso	1250
	Concreto simples	2300
	Concreto armado	2500
Madeiras	Pinho, cedro, cambará	500
	Imbuia, pau-de-alho	650
(secas)	Guajuvira, guatamb <mark>u</mark>	800
	Anjico, cabriúva, ipê, itaúba	1000
Metais	Aço	7850
11100010	Alumínio	2800
	Chumbo	11400
	Bronze	8500
	Cobre	8900
	Ferro fundido	7250
	Latão	8500
	Zinco	7200
Diversos	Borracha	1700
21,01000	Papel	1500
	Plástico (em folhas)	2100
	Vidro plano	2600

1.4. Valores mínimos - Cargas Verticais acidentais (NB5/78)

Tabela 05

	Carga Kgf/m ²		
Arquibancadas	-	400	
Balcões	Mesma carga da peça com a qual se comunicam	-	
Bancos	Escritórios e banheiros Salas de diretoria e de gerência	200 150	
Bibliotecas	Salas de leituras Salas para depósito de livros Salas com estantes de livros a ser determinada em cada caso ou	250 400	

	250kof/m² mon mother do alterno	
	250kgf/m ² por metro de altura,	
	observando porém o valor mínimo de	600
		600
Casa de máquinas	A ser determinado em cada caso com	
	valor mínimo de	750
Cinemas	Platéia com assentos fixos	300
Giricinas	Estúdio e platéia com assentos	
	móveis	400
	banheiro	200
Clubes	Sala com assentos fixos	300
Clubes	Sala com assentos móveis	400
	Salão de danças e esportes	500
	Banheiro	200
Edifícios	Quartos, sala, cozinha, bwc	150
	Despensa e área de serviço	200
residenciais	Escadas	300
Escolas	Salas de aula e anfiteatro	300
200100	Outras salas	200
Forros	Sem acesso a pessoas	50
Galerias de lojas	A ser determinado em cada caso,	
Guierias de rojas	porém com o mínimo de	300
Garagens e	Para veículos de passageiros ou	
	semelhantes com carga máxima de	
estacionamentos	2500kg	500
Hospitais	-	300
Restaurantes		300
Teatros	-	500
Terraços	Sem acesso à público	200
10114900	Com acesso à público	300
	Inacessível à pessoas	50

2. LAJES

São constituídas dos seguintes materiais:

- Aço CA60
- Areia média lavada e pedra ½
- Cimento A.R.I. para pré-moldado
- Concreto FCK 250kgf/cm²

O cimento ARI – Alta Resistência Inicial foi desenvolvido pela indústria cimenteira visando atender as necessidades dos produtos que necessitam de secagem rápida para que possam ser encaminhados para outras operações como transporte, montagem, estocagem, sem que, com isso, o produto sofra alteração em suas características. É o caso

dos pré-fabricados, sejam eles lajes, galpões ou artefatos de cimento. A utilização de outros cimentos, sem o devido acompanhamento técnico, na fabricação destes produtos, pode ocasionar deste a micro-fissuração das peças (facilitando a entrada de umidade), até o rompimento da peça ainda na fase de montagem.

Res. à compressão (MPa)	CPV-ARI	CPII-F32	CPII-Z32	CPIV-32
Res. à compressão com 1dia	21,00	12,74	11,17	11,89
Res. à compressão aos 3 dias	36,57	25,88	23,84	24,54
Res. à compressão aos 7 dias	41,72	31,34	29,06	30,03
Res. à compressão aos 28 dias	48,27	38,86	37,31	41,66

2.1. Lajes pré-fabricadas convencionais:

As Lajes FEMAC para forro são calculadas com sobrecarga de 100kg/m² e as para piso com sobrecarga de 300kg/m² tendo em vista a necessidade de armazenamento de alguns materiais na laje durante a execução da obra. O calculo das lajes e feito garantindo que a linha neutra estará dentro da capa de concreto. O cálculo é feito considerando laje biapoiada.

FIGURA 1: LAJE PRÉ-FABRICADA CONVENCIONAL

Tabela 06

	Laje para forro	Laje para piso
Peso próprio da viga	11,5 kg/m	13,9 kg/m
Sobrecarga	100 kg/m^2	300kg/m^2
Largura da base da viga	8 cm	10 cm
Materiais de enchimento	Lajota cerâmica ou EPS	

Intereixo entre vigas	33cm a 36cm	35cm a 38cm
Espessura da capa de	3cm acima da viga	3cm acima da viga
concreto		
Carga prevista de	40 kg/m^2	100kg/m^2
revestimento inferior e		
superior		
Comprimento mínimo	7,5cm em cada extremidade, sendo 5cm	
para apoio das vigas	em ganchos de ancoragem e 2,5cm em	
	concreto.	
Comprimento de	10cm em gancho de 90° em cada	
ancoragem	extremidade.	
Consumo de concreto	44 litros/m2	
médio por/m2 de capa		

2.2. Lajes pré-fabricadas treliçadas:

As Lajes treliçadas são o mais moderno tipo de laje domercado brasileiro. Alcança grandes vãos (até 14,00m) e suporta grandes cargas (p. ex. paredes sobre laje); e sua montagem é feita utilizando-se o mesmo ferramental e mão-de-obra usuais. As treliçadas FEMAC são calculadas tendo em vista as normas de cargas e dimensionamento de concreto armado. Cada caso é estudado, visando o emprego da mais segura e econômica solução.

Além dos materiais usuais das lajes convencionais; a treliça emprega as seguintes matérias-prima, com o seguinte concreto:

- Pedrisco
- Armação treliçada espacial em Aço CA60
- Concreto FCK 220 kgf/m2
- Ferragem complementar positiva em Aço CA60 ou 50

No cálculo da laje treliçada, a linha neutra pode estar na capa de concreto ou na alma da viga. O cálculo é feito considerando laje biapoiada ou engastada (quando o engaste perfeitamente definido na obra).

A treliça é uma armação eletro-soldada constituída por barras de aço CA60 com o seguinte aspecto.

Tabela 07

	Treliçadas
Peso próprio médio da viga treliçada	10,80 kg/m
Sobrecarga	De acordo com projeto
Largura da base da viga	13 cm
Materiais de enchimento	Lajota cerâmica ou EPS
Intereixo entre vigas	
Com lajota cerâmica	38cm a 41cm
Com lajota em EPS	variável (ver tabela 3)
Espessura da capa de concreto	4cm a 5cm acima de
	acordo com projeto

Carga prevista de revestimento	
• Inferior (reboco)	40 kg/m^2
Superior (contra-piso, piso)	60kg/m^2
Comprimento mínimo para apoio	7,5cm em cada
das vigas	extremidade.
Comprimento de ancoragem	7,5cm em gancho de
	90° em cada
	extremidade.
Consumo de concreto médio	
por/m2 de capa: p. ex.	
• 12cm de altura (B12)	51 litros/m2
• 16cm de altura (B16)	63 litros/m2

A laje treliçada, por possuir armadura de cisalhamento, pode receber paredes assentadas diretamente sobre ela. A FEMAC, nestes casos, fornece uma viga a mais, para que, sob as paredes montadas no sentido longitudinal às vigas treliçadas, sejam montadas 02 vigas justapostas, minimizando assim a flecha na região da parede.

2.3. Painéis treliçados:

Os Painéis treliçados FEMAC são calculadas tendo em vista as normas de cargas e dimensionamento de concreto armado. Cada caso é estudado, visando o emprego da solução mais segura e econômica. As

matérias-prima são as mesmas utilizadas nas treliças. O painel treliçado dispensa a utilização de reboco inferior, sendo o seu acabamento feito com materiais de pintura (massa corrida, tinta,...). O cálculo é feito como viga treliçada.

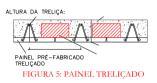


Tabela 08

	Painel	
Peso próprio médio do painel	22,60 kg/m	
treliçado		
Sobrecarga	De acordo com projeto	
Largura da base do painel	27,5 cm	
Materiais de enchimento	Lajota cerâmica, EPS,	
	tijolo cerâmico	
Intereixo entre painéis	27,5cm	
Espessura da capa de concreto	4cm ou 5cm de acordo	
	com projeto	
Carga prevista de revestimento		
Superior (piso)	60kg/m^2	
Comprimento mínimo para apoio	7,5cm em cada	
das vigas	extremidade.	
Comprimento de ancoragem	7,5cm em gancho de	
	90° em cada	
	extremidade.	

Consumo de concreto médio	
por/m2 de capa: p. ex.	
• 12cm de altura (B12)	56 litros/m2
• 16cm de altura (B16)	69 litros/m2
• 10cm de altura (B10 maciço)	70 litros/m2

Os painéis treliçados podem ser usados para suporte de parede, pois assim como as treliças, são armados ao cisalhamento. Os painéis podem ser utilizados com materiais de enchimento (tabela 8) ou podem ser maciços.

Para o emprego dos painéis treliçados, a caixaria deve ser alinhada e não deve apresentar desníveis, ou imperfeições.

2.4. Detalhes de montagem das lajes:

2.4.1 – Escoramento:

O escoramento deve ser feito com tábuas de 2,5cm x 25cm fixadas em escoras. A distância entre escoras, na mesma linha de escoras deverá ser de 1,00m. O escoramento deve ser feito sobre uma base sólida. As escoras devem ser fixadas, observando-se a contra-flecha necessária para montagem correta da laje.

	Distância entre as linha de escoras (m)		
Altura da Laje: ß	Laje convencional	Laje treliçada e Painel	
	para forro e piso	treliçado	
ß11 a ß16	1,00	1,3 0	
ß17 a ß24	-	1,20	
ß25 a ß30	-	1,10	
ß31 a ß40	-	1,00	

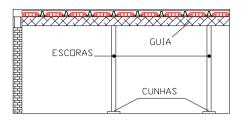
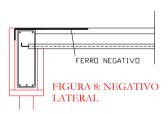


FIGURA 6: ESCORAMENTO

- A retirada do escoramento deve ser feita quando o concreto da capa atingir 70% da resistência característica de projeto (para um FCK de 150 kgf/m2, representa 105 kgf/m2, valor que será atingido aos 21 dias após a data de concretagem). Para diminuir o prazo, o concreto da capa deverá ter um FCK maior.
- Nas lajes bi-apoiadas o escoramento deve ser retirado começando sempre pelas escoras do meio do vão, caso contrário corre-se o risco de inversão dos esforços, com o aparecimento de um momento negativo no meio do vão e a conseqüente fissuração da capa da laje. Nos balanços deve-se retirar primeiramente a escora da extremidade, para que não ocorra o mesmo caso mencionado anteriormente.

2.4.2 – Contra-flecha:


A contra-flecha varia de acordo com as cargas, os vãos e as condições de apoio. Para cargas acidentais normais, para fins de inspeção expedita em obra, é aconselhável manter uma contra-flecha da ordem de **0,33% do vão da laje**.

2.4.3 – Colocação da ferragem acessória para lajes:

• Negativos de travamento: Atua no combate ao momento negativo que pode surgir no apoio das vigas.

 Negativo Lateral: Tem a função de enrijecer o apoio da viga evitando a deformação excessiva e a fissuração da capa de concreto neste ponto

• Nervura transversal: Esta ferragem possibilita maior monoliticidade da laje e melhor aderência do concreto da capa. É montada utilizando-se uma barra de aço transpassada nas vigas pré-moldadas através de furos existentes nas vigas e de 01 lajota cerâmica chanfrada no local de cada furo.

• **Negativo para beiral e sacada:** Tem a função de combater o momento negativo existente nas lajes em balanço.

3 – GALPÕES PRÉ-FABRICADOS:

Os galpões pré-fabricados FEMAC são compostos pelos seguintes itens:

- Pilares em concreto armado FCK 250 kgf/cm2
- Vigas tipo braço em con. armado FCK 250 kgf/cm2
- Terças em vigas de concreto ou perfis "U" e aço
- Telhas em fibrocimento 5 e 6mm ou em aço galvanizado 0,43 ou 0,50mm
- Ferragens acessórias em aço (chapas, parafusos, tirantes, agulhas de cobertura)
- Acessórios de cobertura em aço galvanizado (ganchos par telhas, cordoalhas, fixadores)
- Fundação em concreto, de acordo com projeto

Os pilares e braços são calculados utilizando-se a norma para dimensionamento de concreto armado, observando-se as condições impostas pelo projeto.

3.1 – Tipos de galpões:

Os galpões são classificados de acordo com a dimensão das

peças de concreto.

	Galpão leve	Galpão Médio	Galpão Pesado
Dimensão das	11x16	23x23	23x31
peças (cm)			
Altura (m)	4,00	5,00	6,00
máxima			
Vãos (em	7,0 a 10,0m	10,0 a 12,00m	13,0 a 16,00m
pavilhão único)			
Tipo de terça	Aço	Aço e concreto	Aço e concreto
utilizada			
Aplicação	• Granjas	 Comércio 	 Comércio
	 Comércio 	 Indústria 	 Indústria
	Garagens	 Galpões 	 Galpões
	Rurais	Rurais	Rurais
	Manejo de	(depósitos e	(depósitos e
	animais	armazéns,	armazéns)
		currais)	

A FEMAC, além das dimensões acima mencionadas, desenvolve projetos de galpões com geometrias personalizadas de acordo com as necessidades e condições impostas pelo projeto e pelo terreno.

3.2 Fundação:

A fundação dos pré-fabricados é calculada tendo em vista as cargas de projeto e o tipo de solo. Em solos predominantemente argilosos, a fundação é do tipo indireta, sendo composta por:

- Estacas manuais: de acordo com projeto
- Bloco de ancoragem: transição entre estaca e pilar
- Anel de vedação: evita a ação da umidade junto a perfuração que recebe o pilar.
- A perfuração que recebe o pilar no solo tem, 1,20m de profundidade mínima. As demais dimensões são definidas de acordo com a necessidades do projeto.

3.3 - Espaçamento entre pilares e dimensões de terças metálicas:

Os espaçamento entre os pórticos (conjunto de pilar e braço) e a geometria das terças metálicas, são dimensionadas tendo em vista a carga vertical de vento a que será submetida a cobertura. Na região norte do Paraná, mais especificamente, na região de Apucarana, a linha isoieta, indica a ocorrência de ventos de até 150 Km/h, o que resulta, a uma altura de 7,00m, em uma carga de pressão/sucção de 70 Kg/m2 de cobertura. Esta é a carga a ser usada nos cálculos de cobertura de galpões pré-fabricados, a serem construídos em nossa região.

I=Distância Máxima entre apoios (pilares)	Tipo de terça
I≤ 5,00m	Perfil U, enrijecido, chapa 13; 3"x11/2"
5,0< I ≤5,50m	Perfil U, chapa 13; 4"x 11/2"
$5,50 < I \le 6,0m$	Perfil U, chapa 12; 4"x 11/2"

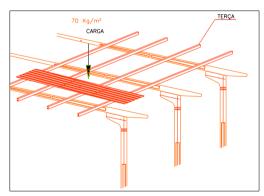


FIGURA 10: ELEMENTOS DE COBERTURA

3.4 - Detalhes de cobertura:

3.4.1 – Fixação das terças nos braços:

As terças metálicas podem ser fixadas através de parafusos. Para tanto os parafusos devem estar perfeitamente soldados nas terças. Esta solução é usada quando não há energia disponível no local da obra.

A solução mais adotada é a de soldar as terças em pinos previamente fixados nos braços. Os pinos têm diâmetro mínimo de 8mm e devem ser soldados na armadura do braço para garantir o perfeito engaste e transmissão de esforços.

Caso as terças sejam de concreto os pinos são substituídos por roscas galvanizadas.

3.4.2 Montagem das telhas de fibrocimento (NBR7196 e NBR6123) e de aço galvanizado (ondulada ou trapezoidal):

3.4.2.1 – Peso médio das telhas por área de cobertura:

Telhas 5mm: 15,0 kgf/m2

• Telhas 6mm: 19,0 kgf/m2

• Telha de aço 0,43mm: 4,13 kgf/m2

• Telha de aço 0,50mm: 4,80 kgf/m2

3.4.2.1 – Distância entre apoios:

A distância máxima entre apoio para telha de fibrocimento é de é de 1,69m e para telhas de aço a distância máxima é de 1,20m. Nas telhas de fibrocimento maiores que 1,83m, é necessário o emprego de apoio intermediário.

3.4.2.2 – Balanço livre (B)

- No sentido do comprimento das telhas:
 - o Fibrocimento:

 $25\text{cm} \le B \le 40\text{cm}$

o Aço galvanizado:

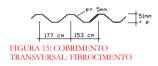
20cm≤ B ≤30cm

B FIGURA 12: BALANÇO LONGITUDINAL

- No sentido da largura das telhas:
 - o Fibrocimento: $B \le 10$ cm
 - o Aço Galvanizado: B ≤ 7cm

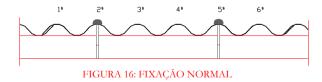
3.4.2.3 - Cobrimentos (C):

- Cobrimento longitudinal:
 - o Fibrocimento:

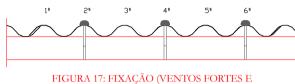

 $C \ge 14cm$

o Aço Galvanizado:

C ≥ 30cm


FIGURA 14: COBRIMENTO LONGITUDINAL

- Cobrimento transversal:
 - \circ C \geq ½ onda da telha
 - o $C \ge 1\frac{1}{2}$ onda da telha



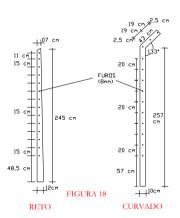
3.4.2.4 – Instalação dos ganchos para telhas:

• Locais de ventos moderados:

• Locais de ventos fortes e nos beirais:

4. ARTEFATOS DE CIMENTO:

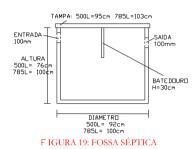
Os materiais utilizados na fabricação destes produtos são:


- Aço CA50 e Aço CA60
- Areia média lavada e pedra ½
- Cimento A.R.I. para pré-moldado
- Concreto FCK 220kgf/cm²

4.1 – Palanques para cerca:

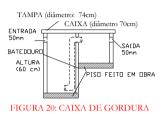
Os palanques ou "mourões" de cerca, produzidos pela FEMAC possuem as seguintes especificações:

	Palanques para cerca,	Palanques para cerca,
	Curvados,em concreto	Reto,em concreto
	vibrado	
Seção	10cmx10cm em toda a	Pé: 12cmx12cm
	peça	Ponta: 7cmx7cm
Comprimento		
- Total	3,00m	2,45m
- Parte reta	2,50m	2,45m
- Curva	50cm	-
Espaçamento		


- Cerca com fios - Cerca c/ tela tipo alambrado ou soldada - Cercas rurais (c/ o emprego de balancim)	3,00m 2,50m 3,50m	3,00m 2,30m
Fixação -Arame Liso -Arame Farpado -Telas soldadas -Telas de alambrado	-Internos, nas furações -Externo, c/ arame galv. 16 -Externa, c/ arame galv. 16 -Externa, a tela é fixa em 04 arames lisos, fixados externamente no palanque	-Internos, nas furações -Externo, c/ arame galv. 16 -Externa, c/ arame galv. 16 -Externa, a tela é fixa em 04 arames lisos, fixados externamente no palanque
Palanque Esticador -Curva de 90°Curvas graduadas -Retas -Portões	1 unid. 2 ou 3 unid. Distância ≤ 50m entre esticadores 1 unid em cada lateral	1 unid. 2 ou 3 unid. Distância ≤ 50m entre esticadores 1 unid em cada lateral
Aplicabilidade	Cercas Rurais em geral Cercas industriais	Cercas comerciais Fachadas

4.2 – Fossa séptica:

São caixas impermeáveis, feitas em argamassa armada. Destinase ao tratamento primário do esgoto doméstico. São feitas em formado cilíndrico, em 2 modelos: 500L e 785L


Volume total	500L	785L
Diâmetro	0,92m	1,00m
Altura	0,76m	1,00m
Atendimento	3 a 4 pessoas	5 a 6 pessoas

4.3 - Caixa de Gordura:

São caixas impermeáveis, feitas em argamassa armada. Destinase à retenção da gordura proveniente de cozinha residenciais e industriais, evitando o entupimento das tubulações. Devem ser abertas em determinado período para retirada da gordura retida. Quanto maior a capacidade volumétrica caixa, maior o período entre as limpezas.

Diâmetro	0,70m
Capacidade	100L
Período de limpeza	2 anos (casa com 4 a 5 pessoas)

4.4 – Tanque para roupas:

Os tanques FEMAC são feitos com argamassa armada e são formados por uma única peça, minimizando a ocorrência de vazamentos.

	Tanque simples "1 cuba"	Tanque duplo "2 cubas"
Altura	76cm	76cm
Capacidade	107 litros	170 litros

OBS: Todos os tanques devem ser fixados em paredes ou anteparos fixos.

4.5 – Outros Artefatos de cimento:

A FEMAC fabrica, vários artefatos de cimento, são eles:

- Tampas para fossa (sumidouro) com diâmetro de 1,20m à 1,70m
- Poste para entrada de energia 75 Dan, "padrão COPEL"
- Torres para suporte de Caixa d'agua 500L, c/ 5,00m altura total
- Elementos Vazados decorativos
- Muros pré-fabricados com 1,20 a 1,80m de altura
- Floreiras ornamentais

